Estimating Diameter and Height Distributions from Airborne Lidar Via Copulas
Abstract
elevation maps. These features are useful for quantifying forest stand parameters such as volume and canopy height at broad scales. This study explores the potential of applying copulas and LiDAR metrics to obtain diameter and height estimates. Predicted values were compared with field measurements. Diameter and height distributions were obtained using moment–based parameter recovery and prediction of moments using nonlinear least squares from LiDAR attributes. We then used copula methods to link the diameter and height distributions. Using the diameter and height distributions, other attributes such as volume or carbon content can be estimated and summed to obtain area-based estimates.
Keywords
Full Text:
PDFReferences
Arias-Rodil, M., Diéguez-Aranda, U., Ãlvarez-González, J.G., Pérez-Cruzado, C., Castedo-Dorado, F., and González-Ferreiro, E. 2018. Modeling diameter distributions in radiata pine plantations in Spain with existing countrywide LiDAR data. Ann. For. Sci. 75: 36.
Asner, G.P., Hughes, R.F., Mascaro, J., Uowolo, A.L., Knapp, D.E., Jacobson, J., Kennedy-Bowdoin, T., and Clark, J.K.. 2011. High-resolution carbon mapping on the million-hectare Island of Hawaii. Front. Ecol. Environ. (e-View): 28.
Ayrey, E., Fraver, S., Kershaw, J.A., Jr., Kenefic, L.S., Hayes, Weiskittel, A.R., and Roth. 2017. Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds. Can. J. Remote Sens. 43(1): 16–27.
Ayrey, E., Hayes, D.J., Fraver, S., Kershaw, J.A., Jr., and Weiskittel, A.R. 2019. Ecologically-Based Metrics for Assessing Structure in Developing Area-Based, Enhanced Forest Inventories from LiDAR. Can. J. Remote Sens.: 45(1): 88-112.
Bailey, R.L., and Dell, T.R. 1973. Quantifying diameter distributions with the Weibull function. For. Sci. 19(2): 97–104.
Borders, B.E., and Patterson, W.D. 1990. Projecting stand tables: A comparison of the Weibull diameter distribution method, a percentile-based projection method, and a basal area growth projection method. For. Sci. 36(2): 413–424.
Brandtberg, T., Warner, T.A., Landenberger, R.E., and McGraw, J.B. 2003. Detection and analysis of individual leaf-off tree crowns in small footprint, high ampling density lidar data from the eastern deciduous forest in North America. Remote Sens. Environ. 85: 290–303.
Breiman, L. 2001. Random forests. Mach. Learn. 45(1): 5–32.
Burk, T.E., and Newberry, J.D. 1984. A simple algorithm for moment-based recovery of Weibull distribution parameters. For. Sci. 30(2): 329–332.
Bury, K.V. 1975. Statistical Models in Applied Science. Robert E. Krieger Publishing Company, INC., Malabar, Florida 32950.
Cleveland, W.S. 1979. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 74(368): 829–836.
Clutter, J.L., Fortson, J.C., Pienaar, L.V., Brister, G.H., and Bailey, R.L. 1983. Timber management. A quantitative approach. In First. John Wiley & Sons, New York.
Culvenor, D.S. 2002. TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Comput. Geosci. 28(1): 33–44.
de Conto, T., Olofsson, K., G¨orgens, E.B., Rodriguez, L.C.E., Almeida, G. 2017.Performance of stem denoising and stem modelling algorithms on single tree point clouds from terrestrial laser scanning. Comput. Electron. Agric., 143:165-176.
Frees, E.W., and Valdez, E. 1998. Understanding relationships using copulas. North Am. Actuar. J. 2(1): 1–25.
Gaveau, D.L.A., and Hill, R.A. 2003. Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Can. J. Remote Sens. 29(5): 650–657.
Genest, C., and MacKay, J. 1986. The Joy of Copulas: Bivariate distributions with uniform marginals. Am. Stat. 40: 280–283.
Gobakken, T., and Næsset, E. 2004. Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data. Scand. J. For. Res. 19(6): 529–542.
Gove, J.H. 2003. Moment and maximum likelihood estimators for Weibull distributions under length- and area-biased sampling. Envvironmental Ecol. Stat. 10(4): 455–467.
Hafley, W.L., and Schreuder, H.T. 1977. Statistical distributions for fitting diameter and height data in even-aged stands. Can. J. For. Res. 7(3): 481–487.
Hayashi, R., Kershaw, J.A., Jr., and Weiskittel, A.R. 2015. Evaluation of alternative methods for using LiDAR to predict aboveground biomass in mixed species and structurally complex forests in northeastern North America. Math. Comput. For. Nat. Resour. Sci. 7(2): 49–65.
Hayashi, R., Weiskittel, A.R., and Kershaw, J.A., Jr. 2016. Influence of prediction cell size on LiDAR-derived area-based estimates of total volume in mixed-species and multicohort forests in northeastern North America. Can. J. Remote Sens. 42(5): 473–488.
Henning, J.G. and Radtke, P.J. 2006. Detailed stem measurements of standing trees from ground-based scanning lidar. For. Sci., 52(1):67-80.
Hsu, Y.-H., Yang, T.-R., Chen, Y., and Kershaw, J.A., Jr. 2020. Sample strategies for bias correction of regional LiDAR-assisted forest inventory estimates on small woodlots. Ann. For. Sci. 77:75, 12p.
Hummel, S., Hudak, A.T., Uebler, E.H., Falkowski, M.J., and Megown, K.A. 2011. A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur National Forest. J. For. 109(5): 267–273.
Kaartinen, H., Hyyppä, J., Yu, X., Vastaranta, M., Hyyppä, H., Kukko, A., Holopainen, M., Heipke, C., Hirschmugl, M., Morsdorf, F., Næsset, E., Pitkänen, J., Popescu, S., Solberg, S., Wolf, B.M., and Wu, J.-C. 2012. An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning. Remote Sens. 4(4): 950–974.
Kershaw, J.A., Jr., and Maguire, D.A. 1996. Crown structure in western hemlock, Douglas-fir, and grand fir in western Washington: horizontal distribution of foliage within branches. Can. J. For. Res. 26(1): 128–142.
Kershaw, J.A., Jr., Richards, E.W., McCarter, J.B., and Oborn, S. 2010. Spatially correlated forest stand structures: A simulation approach using copulas. Comput. Electron. Agric. 74(1): 120–128.
Kershaw, J.A., Jr., Weiskittel, A.R., Lavigne, M.B., and McGarrigle, E. 2017. An imputation/copula-based stochastic individual tree growth model for mixed species Acadian forests: a case study using the Nova Scotia permanent sample plot network. For. Ecosyst. 4: 15.
Kutner, M., Nachtsheim, C., and Neter, J. 2004. Applied linear regression models. In Fourth. McGraw-Hill, New York.
Li, W., Guo, Q., Jakubowski, M., and Kelly, M. 2012. A new method for segmenting individual trees from the lidar point cloud. Photogramm. Eng. Remote Sens. 78(1): 75–84.
Liang, X., Kankare, V., Yu, X., Hyypp¨a, Y., and Holopainen, M. 2014. Automated Stem Curve Measurement Using Terrestrial Laser Scanning. IEEE Trans. Geosci. Remote Sens., 52(3):1739-1748.
Little, S.N. 1983. Weibull diameter distributions for mixed stands of western conifers. Can. J. For. Res. 13(1): 85–88.
Liu, C., Zhang, L., Davis, C.J., Solomon, D.S., and Gove, J.H. 2002. A finite mixture model for characterizing the diameter distributions of mixed-species forest stands. For. Sci. 48(4): 653–661.
Loo, J., and Ives, N. 2003. The Acadian Forest: Historical condition and human impacts. For. Chron. 79(3): 462–474.
Maas, H., Bienert, A., Scheller, S., and Keane, E. 2008. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens., 29(5):1579-1593.
MacPhee, C., Kershaw, J.A., Jr., Weiskittel, A.R., Golding, J., and Lavigne, M.B. 2018. Comparison of approaches for estimating individual tree height–diameter relationships in the Acadian forest region. Forestry 92: 132–146.
Maltamo, M., Mustonen, K., Hyyppä, J., Pitkänen, J., and Yu, X. 2004. The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Can. J. For. Res. 34: 1791–1801.
Maltamo, M., Peuhkurinen, J., Malinen, J., Vauhkonen, J., Packalén, P., and Tokola, T. 2009. Predicting tree attributes and quality characteristics of Scots pine using airborne laser scanning data. Silva Fenn. 43(3).
McGarrigle, E., Kershaw, J.A., Jr., Ducey, M.J., and Lavigne, M.B. 2013. A new approach to modeling stand-level dynamics based on informed random walks: Influence of bandwidth and sample size. Forestry 86(3): 377–389.
Mehtätalo, L., Maltamo, M., and Packalén, P. 2007. RECOVERING PLOT-SPECIFIC DIAMETER DISTRIBUTION AND HEIGHT-DIAMETER CURVE USING ALS BASED STAND CHARACTERISTICS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVI: 288–293.
Næsset, E., and Økland, T. 2002. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens. Environ. 79: 105–115.
Narsky, I. 2003a. Goodness of fit: What do we really want to know? In Proceedings. Physics Statistics (PHYSTAT) 2003. pp. 70–74.
Narsky, I. 2003b. Estimation of goodness-of-fit in multidimensional analysis using distance to nearest neighbor. High Energy Physics, California Technical University.
Nelsen, R.B. 2006. An Introduction to Copulas. In 2nd edition. Springer, New York.
Olofsson, K. and Holmgren, J. 2016. Single tree stem profile detection using terrestrial laser scanner data, flatness saliency features and curvature properties. Forests, 7(9): 207.
PalahÃ, M., Pukkala, T., Blasco, E., and Trasobares, A. 2007. Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain). Eur. J. For. Res. 126(4): 563–571. doi:10.1007/s10342-007-0177-3.
Pitkänen, T.P., Raumonen, P. and Kangas, A. 2019. Measuring stem diameters with TLS in boreal forests by complementary fitting procedure. ISPRS Journal of Photogrammetry and Remote Sensing. 147 :294-306.
Plotnick, R.E., Gardner, R.H., and O’Neill, R.V.. 1993. Lacunarity indices as measures of landscape texture. Landsc. Ecol. 8(3):201–211.
Pueschel, P., Newnham, G., Rock, G., Udelhoven, T., Werner, W., and Hill, J. 2013. The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS J. Photogramm. Remote Sens., 77:44-56.
R Development Core Team. 2021. R: A Language and Environment for Statistical Computing. Available from http://www.R-project.org [accessed Nov. 23, 2021]
Reutebuch, S.E., Andersen, H.-E., and McGaughey, R.J. 2005. Light Detection and Ranging (LIDAR): An Emerging Tool for Multiple Resource Inventory. J. For. 103: 286–292.
Ripley, B.D. 2004. Spatial statistics. Wiley, Hobokin, NJ.
Roussel, J.-R., Auty, D., Boissieu, F.D., Meador, A.S., and Jean-François, B. 2020. Airborne LiDAR Data Manipulation and Visualization for Forestry Applications. Available from https://github.com/Jean-Romain/lidR.
Schilling, M.F. 1986. Multivariate two-sample tests based on nearest neighbors. J. Am. Stat. Assoc. 81(395): 799–806.
Schreuder, H.T., and Hafley, W.L. 1977. A useful bivariate distribution for describing stand structure of tree heights and diameters. Biometrics 33(3): 471–478.
Srinivasan, S., Popescu, C.S., Eriksson, M., Sheridan, D.R., and Ku, N. 2015. Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sens., 7(2):1877-1896.
Temesgen, H., and Ver Hoef, J.M. 2015. Evaluation of the spatial linear model, random forest and gradient nearest-neighbour methods for imputing potential productivity and biomass of the Pacific Northwest forests. Forestry 88(1): 131–142.
Thomas, V., Oliver, R.D., and Woods, M. 2008. LiDAR and Weibull modeling of diameter and basal area. For. Chron. 84(6): 866–875.
Treitz, P.; Lim, K.; Woods, M.; Pitt, D.; Nesbitt, D.; Etheridge, D. 2012. LiDAR sampling density for forest resource inventories in Ontario, Canada. Remote Sensing 4:830:848.
Ver Planck, N.R., Finley, A.O., Kershaw, J.A., Jr., Weiskittel, A.R., and Kress, M.C. 2018. Hierarchical Bayesian models for small area estimation of forest variables using LiDAR. Remote Sens. Environ. 264: 287–295.
Wang, M., Rennolls, K., and Tang, S. 2008. Bivariate distribution modeling of tree diameters and heights: Dependency modeling using copulas. For. Sci. 54(3): 284–293.
Wang, M., Upadhyay, A., and Zhang, L. 2010. Trivariate distribution modeling of tree diameter, height, and volume. For. Sci. 56(3): 290–300.
Wang, S.S. 1998. Aggregation of correlated risk portfolios: Models & algorithms. Proc. Casualty Actuar. Soc. 85(163): 848–937.
White, J.C., Wulder, M.A., and Varhola, A. 2013. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Victoria, BC, Canada. Available from https://pdfs.semanticscholar.org/9c67/0a9f604fe52124dcc3e7d90a9c4eb99ade60.pdf.
Wulder, M.A., Bater, C.W., Coops, N.C., Hilker, T., and White, J.C. 2008. The role of LiDAR in sustainable forest management. For. Chron. 84(6): 807–826.
Xu, Q., Hou, Z., Maltamo, M., and Tokola, T. 2014. Retrieving suppressed trees from model-based height distribution by combining high and low density airborne laser scanning data. Can. J. Remote Sens. 40(3): 233–242.
Xu, Q., Li, B., Maltamo, M., Tokola, T., and Hou, Z. 2019. Predicting tree diameter using allometry described by non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanning. For. Ecol. Manag. 434: 205–212. doi:10.1016/j.foreco.2018.12.020.
Yan, J. 2007. Enjoy the joy of copulas: With a package copula. J. Stat. Softw. 21(4): 1–21.
Yang, T.-R., Kershaw, J.A., Weiskittel, A.R., Lam, T.Y., and McGarrigle, E. 2019. Influence of sample selection method and estimation technique on sample size requirements for wall-to-wall estimation of volume using airborne LiDAR. For. Int. J. For. Res. 92(3): 311–323.
Yang, T.-R., Kershaw, J.A., Jr., and Ducey, M.J., 2021. Development of allometric systems of Equations for Compatible Area-Based LiDAR-Assisted Estimation. Forestry. 94(1):36-53.
Zutter, B.R., Oderwald, R.G., Farrar, R.M., Jr., and Murphy, P.A. 1982. WEIBUL: A program to estimate parameters of forms of the Weibull distribution using complete, censored, and truncated data. Publication, Virginia Polytechnic Institute and State University, Blacksburg, VA, School of Forestry and Wildlife Resources.
Zutter, B.R., Oderwald, R.G., Murphy, P.A., and Farrar, R.M. 1986. Characterizing diameter distributions with modified data types and forms of the Weibull distribution. For. Sci. 32(1): 37–48.
Refbacks
- There are currently no refbacks.



© 2008 Mathematical and Computational Forestry & Natural-Resource Sciences